something like alphazero??
This commit is contained in:
parent
44e30869f8
commit
f0001cc0df
1 changed files with 277 additions and 179 deletions
430
blokus.py
430
blokus.py
|
|
@ -1,4 +1,5 @@
|
|||
#!/usr/bin/env python
|
||||
#!/usr/bin/env python3
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
|
@ -45,6 +46,11 @@ tiles = [
|
|||
]
|
||||
|
||||
|
||||
def clone_state(game_state):
|
||||
board, p1tiles, p2tiles = game_state
|
||||
return [board.copy(), p1tiles.copy(), p2tiles.copy()]
|
||||
|
||||
|
||||
def get_permutations(which_tiles: list[int]):
|
||||
"""
|
||||
For each tile index in which_tiles, generate all unique rotations/flips.
|
||||
|
|
@ -95,6 +101,7 @@ def can_place(board: np.ndarray, tile: np.ndarray, player: int):
|
|||
break
|
||||
else:
|
||||
placements.append((x, y))
|
||||
|
||||
final = []
|
||||
if has_minus_one:
|
||||
for x, y in placements:
|
||||
|
|
@ -144,17 +151,20 @@ def do_placement(
|
|||
tidx: int, tile: np.ndarray, placement: tuple[int, int], game_state, player: int
|
||||
):
|
||||
(x, y) = placement
|
||||
board, p1tiles, p2tiles = game_state
|
||||
with np.nditer(tile, flags=["multi_index"]) as it:
|
||||
for v in it:
|
||||
(i, j) = it.multi_index
|
||||
if v == 1:
|
||||
game_state[0][x + i, y + j] = player
|
||||
game_state[player].remove(tidx)
|
||||
board[x + i, y + j] = player
|
||||
if player == 1:
|
||||
p1tiles.remove(tidx)
|
||||
else:
|
||||
p2tiles.remove(tidx)
|
||||
|
||||
|
||||
def print_game_state(game_state):
|
||||
(board, p1tiles, p2tiles) = game_state
|
||||
|
||||
for row in board:
|
||||
print(
|
||||
"".join(
|
||||
|
|
@ -164,7 +174,6 @@ def print_game_state(game_state):
|
|||
]
|
||||
)
|
||||
)
|
||||
|
||||
print("")
|
||||
print(f"Player 1 tiles left: {p1tiles}")
|
||||
print(f"Player 2 tiles left: {p2tiles}")
|
||||
|
|
@ -175,11 +184,22 @@ def reset_game():
|
|||
board = make_board()
|
||||
p1tiles = [i for i in range(21)]
|
||||
p2tiles = [i for i in range(21)]
|
||||
return [board, p1tiles, p2tiles] # list so it's mutable in-place
|
||||
return [board, p1tiles, p2tiles] # list so it is mutable
|
||||
|
||||
|
||||
def get_all_moves(game_state, player: int):
|
||||
board, p1tiles, p2tiles = game_state
|
||||
available_tiles = p1tiles if player == 1 else p2tiles
|
||||
|
||||
moves = []
|
||||
for tidx, tile in get_permutations(available_tiles):
|
||||
for placement in can_place(board, tile, player):
|
||||
moves.append((tidx, tile, placement))
|
||||
return moves
|
||||
|
||||
|
||||
# =======================
|
||||
# RL: encoding & policy
|
||||
# AlphaZero-style network
|
||||
# =======================
|
||||
|
||||
|
||||
|
|
@ -205,7 +225,7 @@ def encode_move(
|
|||
return torch.tensor([tidx, x, y, area], dtype=torch.float32)
|
||||
|
||||
|
||||
class PolicyNet(nn.Module):
|
||||
class PolicyValueNet(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.conv = nn.Sequential(
|
||||
|
|
@ -216,195 +236,290 @@ class PolicyNet(nn.Module):
|
|||
)
|
||||
conv_out_dim = 64 * BOARD_SIZE * BOARD_SIZE # 64 * 14 * 14
|
||||
|
||||
self.fc = nn.Sequential(
|
||||
nn.Linear(conv_out_dim + 4, 256),
|
||||
# Value head (board only)
|
||||
self.value_head = nn.Sequential(
|
||||
nn.Linear(conv_out_dim, 128),
|
||||
nn.ReLU(),
|
||||
nn.Linear(256, 1), # scalar logit
|
||||
nn.Linear(128, 1),
|
||||
nn.Tanh(), # value in [-1, 1]
|
||||
)
|
||||
|
||||
def forward(
|
||||
self, board_tensor: torch.Tensor, move_features: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
# Policy head (board + move features)
|
||||
self.policy_head = nn.Sequential(
|
||||
nn.Linear(conv_out_dim + 4, 256),
|
||||
nn.ReLU(),
|
||||
nn.Linear(256, 1), # logit per move
|
||||
)
|
||||
|
||||
def forward(self, board_tensor: torch.Tensor, move_features: torch.Tensor):
|
||||
"""
|
||||
board_tensor: (3, 14, 14)
|
||||
move_features: (N, 4)
|
||||
returns: logits (N,)
|
||||
returns: (policy_logits: (N,), value: scalar)
|
||||
"""
|
||||
x = self.conv(board_tensor.unsqueeze(0)) # (1, 64, 14, 14)
|
||||
x = x.view(1, -1) # (1, conv_out_dim)
|
||||
x = x.repeat(move_features.size(0), 1) # (N, conv_out_dim)
|
||||
board_embed = x
|
||||
|
||||
combined = torch.cat([x, move_features], dim=1) # (N, conv_out_dim + 4)
|
||||
logits = self.fc(combined).squeeze(-1) # (N,)
|
||||
return logits
|
||||
# value head
|
||||
value = self.value_head(board_embed).squeeze(0).squeeze(-1) # scalar
|
||||
|
||||
# policy head
|
||||
x_rep = board_embed.repeat(move_features.size(0), 1) # (N, conv_out_dim)
|
||||
combined = torch.cat([x_rep, move_features], dim=1) # (N, conv_out_dim + 4)
|
||||
logits = self.policy_head(combined).squeeze(-1) # (N,)
|
||||
|
||||
return logits, value
|
||||
|
||||
|
||||
# =======================
|
||||
# RL: move generation & action selection
|
||||
# MCTS (AlphaZero-style)
|
||||
# =======================
|
||||
|
||||
|
||||
def get_all_moves(game_state, player: int):
|
||||
board, p1tiles, p2tiles = game_state
|
||||
available_tiles = p1tiles if player == 1 else p2tiles
|
||||
class MCTSNode:
|
||||
def __init__(self, state, player: int):
|
||||
self.state = state
|
||||
self.player = player
|
||||
self.is_expanded = False
|
||||
self.is_terminal = False
|
||||
|
||||
moves = []
|
||||
for tidx, tile in get_permutations(available_tiles):
|
||||
for placement in can_place(board, tile, player):
|
||||
moves.append((tidx, tile, placement))
|
||||
self.moves: Optional[list[tuple[int, np.ndarray, tuple[int, int]]]] = None
|
||||
self.priors: Optional[np.ndarray] = None
|
||||
self.Nsa: Optional[np.ndarray] = None
|
||||
self.Wsa: Optional[np.ndarray] = None
|
||||
self.Qsa: Optional[np.ndarray] = None
|
||||
|
||||
return moves
|
||||
|
||||
|
||||
def select_action(policy: PolicyNet, game_state, player: int, device="cpu"):
|
||||
board, _, _ = game_state
|
||||
moves = get_all_moves(game_state, player)
|
||||
self.children: dict[int, "MCTSNode"] = {}
|
||||
|
||||
def expand(self, net: PolicyValueNet, device="cpu") -> float:
|
||||
"""
|
||||
Returns value v from perspective of self.player.
|
||||
"""
|
||||
moves = get_all_moves(self.state, self.player)
|
||||
if len(moves) == 0:
|
||||
return None, None # no legal moves
|
||||
# No moves: this player loses
|
||||
self.is_terminal = True
|
||||
self.is_expanded = True
|
||||
return -1.0
|
||||
|
||||
board_tensor = encode_board(board, player).to(device)
|
||||
self.moves = moves
|
||||
|
||||
board, _, _ = self.state
|
||||
board_tensor = encode_board(board, self.player).to(device)
|
||||
move_feats = torch.stack(
|
||||
[encode_move(tidx, tile, placement) for (tidx, tile, placement) in moves], dim=0
|
||||
[encode_move(tidx, tile, placement) for (tidx, tile, placement) in moves],
|
||||
dim=0,
|
||||
).to(device)
|
||||
|
||||
logits = policy(board_tensor, move_feats) # (N,)
|
||||
probs = F.softmax(logits, dim=0)
|
||||
dist = torch.distributions.Categorical(probs)
|
||||
idx = dist.sample()
|
||||
log_prob = dist.log_prob(idx)
|
||||
with torch.no_grad():
|
||||
logits, value = net(board_tensor, move_feats)
|
||||
probs = F.softmax(logits, dim=0).cpu().numpy()
|
||||
v = float(value.item())
|
||||
|
||||
chosen_move = moves[idx.item()]
|
||||
return chosen_move, log_prob
|
||||
self.priors = probs
|
||||
n = len(moves)
|
||||
self.Nsa = np.zeros(n, dtype=np.float32)
|
||||
self.Wsa = np.zeros(n, dtype=np.float32)
|
||||
self.Qsa = np.zeros(n, dtype=np.float32)
|
||||
self.is_expanded = True
|
||||
return v
|
||||
|
||||
def select_action(self, c_puct: float = 1.5) -> int:
|
||||
"""
|
||||
Select action index using PUCT formula.
|
||||
"""
|
||||
Ns = np.sum(self.Nsa) + 1e-8
|
||||
u = c_puct * self.priors * np.sqrt(Ns) / (1.0 + self.Nsa)
|
||||
scores = self.Qsa + u
|
||||
return int(np.argmax(scores))
|
||||
|
||||
|
||||
def mcts_search(
|
||||
net: PolicyValueNet,
|
||||
root_state,
|
||||
root_player: int,
|
||||
n_simulations: int,
|
||||
device="cpu",
|
||||
c_puct: float = 1.5,
|
||||
):
|
||||
root = MCTSNode(clone_state(root_state), root_player)
|
||||
|
||||
for _ in range(n_simulations):
|
||||
node = root
|
||||
path: list[tuple[MCTSNode, int]] = []
|
||||
|
||||
# Traverse
|
||||
while True:
|
||||
if not node.is_expanded:
|
||||
v = node.expand(net, device)
|
||||
break
|
||||
if node.is_terminal:
|
||||
# Value from this player's perspective is -1 (no moves)
|
||||
v = -1.0
|
||||
break
|
||||
|
||||
a = node.select_action(c_puct)
|
||||
path.append((node, a))
|
||||
|
||||
if a in node.children:
|
||||
node = node.children[a]
|
||||
else:
|
||||
# create child
|
||||
child_state = clone_state(node.state)
|
||||
tidx, tile, placement = node.moves[a]
|
||||
do_placement(tidx, tile, placement, child_state, node.player)
|
||||
next_player = 2 if node.player == 1 else 1
|
||||
child = MCTSNode(child_state, next_player)
|
||||
node.children[a] = child
|
||||
node = child
|
||||
# next loop iteration will expand it
|
||||
# Backpropagate value v (from leaf player's perspective)
|
||||
val = v
|
||||
# Going back up the tree, the perspective alternates each move
|
||||
for parent, action_index in reversed(path):
|
||||
val = -val # switch to parent's perspective
|
||||
parent.Nsa[action_index] += 1.0
|
||||
parent.Wsa[action_index] += val
|
||||
parent.Qsa[action_index] = (
|
||||
parent.Wsa[action_index] / parent.Nsa[action_index]
|
||||
)
|
||||
|
||||
# After all simulations, derive policy target from root visit counts
|
||||
if not root.is_expanded or root.is_terminal or root.moves is None:
|
||||
return None, None, None
|
||||
|
||||
visits = root.Nsa
|
||||
pi = visits / np.sum(visits)
|
||||
# Sample action from pi (exploration); you can use argmax for greedy play
|
||||
action_index = int(np.random.choice(len(root.moves), p=pi))
|
||||
return root.moves, pi, action_index
|
||||
|
||||
|
||||
# =======================
|
||||
# RL: self-play episode
|
||||
# Self-play + training
|
||||
# =======================
|
||||
|
||||
|
||||
def play_episode(policy1: PolicyNet, policy2: PolicyNet, optim1, optim2, device="cpu"):
|
||||
policy1.train()
|
||||
policy2.train()
|
||||
def self_play_game(net: PolicyValueNet, n_simulations: int, device="cpu"):
|
||||
"""
|
||||
Plays one self-play game using MCTS + shared network.
|
||||
Returns a list of training examples:
|
||||
each entry: (board_snapshot, player, moves, pi, z)
|
||||
"""
|
||||
game_state = reset_game()
|
||||
player = 1
|
||||
|
||||
log_probs1 = []
|
||||
log_probs2 = []
|
||||
history = [] # list of dicts: board, player, moves, pi, z (filled later)
|
||||
|
||||
while True:
|
||||
if player == 1:
|
||||
move, log_prob = select_action(policy1, game_state, player, device)
|
||||
else:
|
||||
move, log_prob = select_action(policy2, game_state, player, device)
|
||||
|
||||
# No move → this player loses
|
||||
if move is None:
|
||||
loser = player
|
||||
moves = get_all_moves(game_state, player)
|
||||
if len(moves) == 0:
|
||||
winner = 2 if player == 1 else 1
|
||||
break
|
||||
|
||||
tidx, tile, placement = move
|
||||
# Run MCTS from current state
|
||||
mcts_moves, pi, a_idx = mcts_search(
|
||||
net, game_state, player, n_simulations, device
|
||||
)
|
||||
if mcts_moves is None:
|
||||
winner = 2 if player == 1 else 1
|
||||
break
|
||||
|
||||
if player == 1:
|
||||
log_probs1.append(log_prob)
|
||||
else:
|
||||
log_probs2.append(log_prob)
|
||||
# Save training position (copy board only; moves are references)
|
||||
board_snapshot = game_state[0].copy()
|
||||
history.append(
|
||||
{
|
||||
"board": board_snapshot,
|
||||
"player": player,
|
||||
"moves": mcts_moves,
|
||||
"pi": pi,
|
||||
"z": None, # fill after game
|
||||
}
|
||||
)
|
||||
|
||||
# Play chosen move
|
||||
tidx, tile, placement = mcts_moves[a_idx]
|
||||
do_placement(tidx, tile, placement, game_state, player)
|
||||
|
||||
player = 2 if player == 1 else 1
|
||||
|
||||
print_game_state(game_state)
|
||||
print(f"Player {winner} is the winner")
|
||||
# Rewards: +1 for win, -1 for loss (from each player's perspective)
|
||||
r1 = 1.0 if winner == 1 else -1.0
|
||||
r2 = -r1
|
||||
# Game finished, assign outcomes
|
||||
for entry in history:
|
||||
entry["z"] = 1.0 if entry["player"] == winner else -1.0
|
||||
|
||||
if log_probs1:
|
||||
loss1 = -torch.stack(log_probs1).sum() * r1
|
||||
optim1.zero_grad()
|
||||
loss1.backward()
|
||||
optim1.step()
|
||||
return history, winner
|
||||
|
||||
if log_probs2:
|
||||
loss2 = -torch.stack(log_probs2).sum() * r2
|
||||
optim2.zero_grad()
|
||||
loss2.backward()
|
||||
optim2.step()
|
||||
|
||||
return r1 # from Player 1's perspective
|
||||
def train_on_history(net: PolicyValueNet, optimizer, history, device="cpu"):
|
||||
"""
|
||||
Single gradient step over all positions from one self-play game.
|
||||
"""
|
||||
net.train()
|
||||
optimizer.zero_grad()
|
||||
total_loss = 0.0
|
||||
|
||||
for entry in history:
|
||||
board = entry["board"]
|
||||
player = entry["player"]
|
||||
moves = entry["moves"]
|
||||
pi = entry["pi"]
|
||||
z = entry["z"]
|
||||
|
||||
board_tensor = encode_board(board, player).to(device)
|
||||
move_feats = torch.stack(
|
||||
[encode_move(tidx, tile, placement) for (tidx, tile, placement) in moves],
|
||||
dim=0,
|
||||
).to(device)
|
||||
target_pi = torch.from_numpy(pi).to(device)
|
||||
target_z = torch.tensor(z, dtype=torch.float32, device=device)
|
||||
|
||||
logits, value = net(board_tensor, move_feats)
|
||||
log_probs = F.log_softmax(logits, dim=0)
|
||||
|
||||
policy_loss = -(target_pi * log_probs).sum()
|
||||
value_loss = F.mse_loss(value, target_z)
|
||||
|
||||
loss = policy_loss + value_loss
|
||||
total_loss += loss
|
||||
|
||||
if len(history) > 0:
|
||||
total_loss = total_loss / len(history)
|
||||
|
||||
total_loss.backward()
|
||||
optimizer.step()
|
||||
return float(total_loss.item())
|
||||
|
||||
|
||||
# =======================
|
||||
# Evaluation: watch them play
|
||||
# Simple evaluation game
|
||||
# =======================
|
||||
|
||||
|
||||
def play_game(policy1: PolicyNet, policy2: PolicyNet, device="cpu"):
|
||||
policy1.eval()
|
||||
policy2.eval()
|
||||
def play_game_with_mcts(net: PolicyValueNet, n_simulations: int, device="cpu"):
|
||||
"""
|
||||
Watch two MCTS+net players (same weights) play against each other.
|
||||
"""
|
||||
net.eval()
|
||||
game_state = reset_game()
|
||||
player = 1
|
||||
while True:
|
||||
print_game_state(game_state)
|
||||
|
||||
if player == 1:
|
||||
move, _ = select_action(policy1, game_state, player, device)
|
||||
else:
|
||||
move, _ = select_action(policy2, game_state, player, device)
|
||||
|
||||
if move is None:
|
||||
print(f"No moves left, player {player} lost")
|
||||
break
|
||||
|
||||
tidx, tile, placement = move
|
||||
do_placement(tidx, tile, placement, game_state, player)
|
||||
|
||||
player = 2 if player == 1 else 1
|
||||
|
||||
def load_policy(path, device="cpu"):
|
||||
policy = PolicyNet().to(device)
|
||||
policy.load_state_dict(torch.load(path, map_location=device))
|
||||
policy.eval()
|
||||
return policy
|
||||
|
||||
def human_vs_ai(ai_policy: PolicyNet, device="cpu"):
|
||||
ai_policy.eval()
|
||||
game_state = reset_game()
|
||||
player = 1 # AI goes first
|
||||
|
||||
while True:
|
||||
print_game_state(game_state)
|
||||
|
||||
# Who moves?
|
||||
if player == 1:
|
||||
print("AI thinking...")
|
||||
move, _ = select_action(ai_policy, game_state, player, device)
|
||||
if move is None:
|
||||
print("AI has no moves — AI loses!")
|
||||
break
|
||||
tidx, tile, placement = move
|
||||
print(f"AI plays tile {tidx} at {placement}\n")
|
||||
else:
|
||||
# human turn
|
||||
moves = get_all_moves(game_state, player)
|
||||
if not moves:
|
||||
print("You have no moves — you lose!")
|
||||
print(f"No moves left, player {player} loses.")
|
||||
break
|
||||
|
||||
print("Your legal moves:")
|
||||
for i, (tidx, tile, placement) in enumerate(moves):
|
||||
print(f"{i}: tile {tidx} at {placement}")
|
||||
mcts_moves, pi, a_idx = mcts_search(
|
||||
net, game_state, player, n_simulations, device
|
||||
)
|
||||
if mcts_moves is None:
|
||||
print(f"No moves left (MCTS), player {player} loses.")
|
||||
break
|
||||
|
||||
choice = int(input("Choose move number: "))
|
||||
tidx, tile, placement = moves[choice]
|
||||
|
||||
# Apply move
|
||||
tidx, tile, placement = mcts_moves[a_idx]
|
||||
print(f"Player {player} plays tile {tidx} at {placement}")
|
||||
do_placement(tidx, tile, placement, game_state, player)
|
||||
|
||||
# Switch players
|
||||
player = 2 if player == 1 else 1
|
||||
|
||||
|
||||
|
|
@ -417,45 +532,28 @@ def main():
|
|||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
print(f"Using device: {device}")
|
||||
|
||||
policy1 = PolicyNet().to(device)
|
||||
policy2 = PolicyNet().to(device)
|
||||
net = PolicyValueNet().to(device)
|
||||
optimizer = optim.Adam(net.parameters(), lr=1e-3)
|
||||
|
||||
optim1 = optim.Adam(policy1.parameters(), lr=1e-3)
|
||||
optim2 = optim.Adam(policy2.parameters(), lr=1e-3)
|
||||
num_games = 200 # increase a lot for real training
|
||||
n_simulations = 50 # MCTS sims per move (increase if it's too weak)
|
||||
|
||||
best_avg_reward = -999
|
||||
reward_history = []
|
||||
for g in range(1, num_games + 1):
|
||||
history, winner = self_play_game(net, n_simulations, device)
|
||||
loss = train_on_history(net, optimizer, history, device)
|
||||
|
||||
num_episodes = 2000
|
||||
for episode in range(1, num_episodes + 1):
|
||||
reward = play_episode(policy1, policy2, optim1, optim2, device=device)
|
||||
reward_history.append(reward)
|
||||
print(
|
||||
f"Game {g}/{num_games}, winner: Player {winner}, loss: {loss:.4f}, positions: {len(history)}"
|
||||
)
|
||||
|
||||
# compute moving average every 50 episodes
|
||||
if len(reward_history) >= 50:
|
||||
avg = sum(reward_history[-50:]) / 50
|
||||
# occasionally watch a game
|
||||
if g % 50 == 0:
|
||||
print("Watching a game with current network:")
|
||||
play_game_with_mcts(net, n_simulations=30, device=device)
|
||||
|
||||
# If policy1 improved, save it
|
||||
if avg > best_avg_reward:
|
||||
best_avg_reward = avg
|
||||
torch.save(policy1.state_dict(), "best_policy1.pth")
|
||||
print(f"Saved best policy1 at episode {episode} (avg reward={avg:.3f})")
|
||||
|
||||
if episode % 100 == 0:
|
||||
print(f"Episode {episode}, last reward={reward}")
|
||||
|
||||
print("Training complete.")
|
||||
print("1 = Watch AI vs AI")
|
||||
print("2 = Play against AI")
|
||||
print("3 = Quit")
|
||||
|
||||
choice = input("Select: ")
|
||||
|
||||
if choice == "1":
|
||||
play_game(policy1, policy2, device)
|
||||
elif choice == "2":
|
||||
best_ai = load_policy("best_policy1.pth", device)
|
||||
human_vs_ai(best_ai, device)
|
||||
# Save final network
|
||||
torch.save(net.state_dict(), "alphazero_blokus_net.pth")
|
||||
print("Saved network to alphazero_blokus_net.pth")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue