add week 6 progress
This commit is contained in:
parent
57f4398f46
commit
2cb5606f6e
1 changed files with 64 additions and 0 deletions
|
|
@ -55,6 +55,70 @@
|
||||||
|
|
||||||
#let today-offset = (datetime.today() - datetime(day: 10, month: 11, year: 2025)).weeks()
|
#let today-offset = (datetime.today() - datetime(day: 10, month: 11, year: 2025)).weeks()
|
||||||
|
|
||||||
|
= Week 6
|
||||||
|
The plan
|
||||||
|
|
||||||
|
== Evolutionary algorithms
|
||||||
|
|
||||||
|
High level protocol:
|
||||||
|
1. Generate a random population
|
||||||
|
2. Evaluate the fitness
|
||||||
|
3. Select the better individuals
|
||||||
|
4. Produce offsprint
|
||||||
|
5. Repeat until goal reached at 2
|
||||||
|
|
||||||
|
Generally Genetic Algorithms but alternatives exist
|
||||||
|
|
||||||
|
== Genetic Algorithm
|
||||||
|
|
||||||
|
Each item in the population has genes,
|
||||||
|
these combine and mutate to produce offspring.
|
||||||
|
|
||||||
|
Assumes some kind of "building blocks"
|
||||||
|
|
||||||
|
Tends to local optimum instead of global
|
||||||
|
|
||||||
|
== Genetic Algorithms for QAS
|
||||||
|
|
||||||
|
Population tends to local optimum \
|
||||||
|
$->$ risk for circuits with similar "area" of expressibility
|
||||||
|
|
||||||
|
We want diversity in the final circuits \
|
||||||
|
$->$ probability of at least one having high expressibility in solution area
|
||||||
|
|
||||||
|
Limit offspring mutations \
|
||||||
|
$->$ Need to keep offspring within hardware constraints
|
||||||
|
|
||||||
|
== Implemented Genetic Algorithms for QAS
|
||||||
|
|
||||||
|
Applied in Arxiv submission "Genetic optimization of ansatz
|
||||||
|
expressibility for enhanced variational quantum algorithm
|
||||||
|
performance."@genetic-expressibility
|
||||||
|
|
||||||
|
Does:
|
||||||
|
- Problem agnostic QAS
|
||||||
|
- Depth limiting as noise limit
|
||||||
|
|
||||||
|
However:
|
||||||
|
- No noise simulation *or* proxy
|
||||||
|
- Maximising expressibility instead of target
|
||||||
|
- Entanglement not included at all
|
||||||
|
|
||||||
|
== What I will be doing
|
||||||
|
|
||||||
|
1. Reproduce parts of the paper@genetic-expressibility mentioned before
|
||||||
|
to have a baseline and something to benchmark against.
|
||||||
|
As it is closer to what we discussed as TF-QAS@training-free is.
|
||||||
|
2. Hardware constraints
|
||||||
|
- Qubit connectivity
|
||||||
|
- Per-qubit gate types (for NV-centers etc.)
|
||||||
|
- Scheduling constraints
|
||||||
|
3. Add more proxies
|
||||||
|
- Entanglement
|
||||||
|
- Noise/Fidelity
|
||||||
|
- Trainability (maybe)
|
||||||
|
4. Test (first simulation, then hardware if possible)
|
||||||
|
|
||||||
= Week 5
|
= Week 5
|
||||||
Methods of QAS
|
Methods of QAS
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue