add to tf-qas presentation
This commit is contained in:
parent
77bf17f10d
commit
4ec2f5001a
4 changed files with 597 additions and 286 deletions
180
presentations/tf-qas.typ
Normal file
180
presentations/tf-qas.typ
Normal file
|
|
@ -0,0 +1,180 @@
|
|||
|
||||
#import "@preview/touying:0.6.1": *
|
||||
#import "@preview/physica:0.9.5": *
|
||||
#import "@preview/cetz:0.3.4"
|
||||
#import "@preview/typsium:0.2.0": ce
|
||||
#import "@preview/numbly:0.1.0": numbly
|
||||
#import "./theme.typ": *
|
||||
|
||||
#set heading(numbering: numbly("{1}.", default: "1.1"))
|
||||
#show ref: set text(size:0.5em, baseline: -0.75em)
|
||||
|
||||
#let cetz-canvas = touying-reducer.with(reduce: cetz.canvas, cover: cetz.draw.hide.with(bounds: true))
|
||||
|
||||
|
||||
#show: university-theme.with(
|
||||
config-info(
|
||||
title: "Implementation Specific QAS", // Required
|
||||
date: datetime.today().display(),
|
||||
authors: ("Noa Aarts"),
|
||||
|
||||
// Optional Styling (for more / explanation see in the typst universe)
|
||||
// ignore how bad the images look i'll adjust it until Monday
|
||||
title-color: blue.darken(10%),
|
||||
),
|
||||
config-common(
|
||||
// handout: true, // enable this for a version without animations
|
||||
),
|
||||
aspect-ratio: "16-9",
|
||||
config-colors(
|
||||
primary: rgb("#00a6d6"),
|
||||
secondary: rgb("#00b3dc"),
|
||||
tertiary: rgb("#b8cbde"),
|
||||
neutral-lightest: rgb("#ffffff"),
|
||||
neutral-darkest: rgb("#000000"),
|
||||
),
|
||||
)
|
||||
|
||||
#show outline.entry: it => link(
|
||||
it.element.location(),
|
||||
text(fill: rgb("#00b3dc"), size: 1.3em)[#it.indented(it.prefix(), it.body())],
|
||||
)
|
||||
|
||||
|
||||
#slide[
|
||||
- #text(fill: purple)[Purple text is a question I have]
|
||||
- #text(fill: red)[Red text is something I think they did not do well]
|
||||
- #text(fill: orange)[Orange text is something I would have preferred a reference for]
|
||||
]
|
||||
|
||||
#title-slide()
|
||||
|
||||
#outline(depth: 1, title: text(fill: rgb("#00a6d6"))[Content])
|
||||
|
||||
= Introduction
|
||||
|
||||
== Variational Quantum Algorithms
|
||||
|
||||
- Classical optimisation
|
||||
|
||||
- Parametrized Quantum Circuit
|
||||
|
||||
- Very structure dependent
|
||||
|
||||
== Quantum Architecture Search
|
||||
|
||||
- Automated Design
|
||||
|
||||
- New Problems
|
||||
- Exponential search space
|
||||
- Ranking circuits during search
|
||||
|
||||
- Parallels with Neural Architecture Search
|
||||
- Differentiable QAS
|
||||
- Reinforcement-learning QAS
|
||||
- Predictor-based QAS
|
||||
- Weight-sharing QAS
|
||||
|
||||
== Training Free Proxies
|
||||
|
||||
- No need to train parametrized quantum circuit
|
||||
\ $->$ Faster searching
|
||||
|
||||
- No objective functions
|
||||
- Possibility for easier transfer
|
||||
|
||||
- Need to prove correlation with ground-truth
|
||||
#text(fill: red)[- not done in paper]
|
||||
|
||||
= Method
|
||||
|
||||
== Overview
|
||||
|
||||
#align(horizon)[
|
||||
1. Sample circuits from search space
|
||||
|
||||
2. Filter using Path proxy
|
||||
|
||||
3. Rank on Expressibility
|
||||
]
|
||||
|
||||
== Search Space
|
||||
|
||||
Following Neural Predictor based QAS@npqas
|
||||
- Native gate set ($cal(A) = {R_x, R_y, R_z, X X, Y Y, Z Z}$)
|
||||
- Layer based sampling
|
||||
- Layers of $n/2$ gates
|
||||
- Gate based sampling
|
||||
- placing 1 gate at a time
|
||||
|
||||
- Why not fully random circuits?
|
||||
- Mitigating barren plateaus
|
||||
- Mitigating high circuit depth
|
||||
#text(fill:purple)[- What is the difference with gate-based?]
|
||||
|
||||
== Path Proxy
|
||||
|
||||
#slide(composer: (auto, auto))[
|
||||
- 'zero-cost'
|
||||
#text(fill:orange)[- best case: $O("Operations" times "Qubits"^2)$]
|
||||
// I think it'd scale like this, but am uncertain since they didn't explain it anywhere
|
||||
- below $7.8 times 10^(-4)$s
|
||||
|
||||
1. Represent as Directed acyclic graph
|
||||
|
||||
2. Count distinct paths from input-to-output
|
||||
|
||||
3. Top-R highest path count circuits
|
||||
][
|
||||
#image("tf-qas/circuit.png", height: 40%)
|
||||
#image("tf-qas/dag.png")
|
||||
#text(size: 0.6em)[#align(right)[from Training-Free QAS@training-free]]
|
||||
]
|
||||
|
||||
== Expressibility Proxy
|
||||
|
||||
#text(fill: red)[- Performance hinges on Expressibility]
|
||||
- Particularly valueable without prior knowledge
|
||||
|
||||
#block(fill: blue.lighten(85%), inset: 12pt, radius: 6pt, stroke: 2pt + blue)[
|
||||
*Expressibility:* \
|
||||
The capability to uniformly reach the entire Hilbert space.
|
||||
]
|
||||
|
||||
1. Calculate expressibility:
|
||||
#align(center)[$cal(E)(cal(C)) = -D_"KL" (P(cal(C),F) || P_"Haar" (F)$]
|
||||
|
||||
2. Top expressibility circuits
|
||||
|
||||
= Results
|
||||
|
||||
== Evaluation
|
||||
|
||||
- Three variational quantum eigensolver tasks
|
||||
- Transverse field Ising model
|
||||
- Heisenberg model
|
||||
- $"Be"space.hair"H"_2$ molecule
|
||||
|
||||
- Compared to
|
||||
- Network-Predictive QAS@npqas
|
||||
#text(fill: red)[- Hardware-efficient ansatz@hea-kandala] // but like, which one
|
||||
- Random sampling
|
||||
|
||||
- Implementation details
|
||||
- TensorCircuit python package@tensorcircuit
|
||||
#text(fill: red)[- No code included anywhere]
|
||||
|
||||
|
||||
= Conclusion
|
||||
|
||||
==
|
||||
|
||||
- Combining proxies can improve on either
|
||||
|
||||
|
||||
|
||||
#slide[
|
||||
== References <touying:unoutlined>
|
||||
#bibliography("references.bib", title: [])
|
||||
]
|
||||
|
||||
BIN
presentations/tf-qas/circuit.png
Normal file
BIN
presentations/tf-qas/circuit.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 187 KiB |
BIN
presentations/tf-qas/dag.png
Normal file
BIN
presentations/tf-qas/dag.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 209 KiB |
Loading…
Add table
Add a link
Reference in a new issue