add to tf-qas presentation

This commit is contained in:
Noa Aarts 2025-11-29 17:03:57 +01:00
parent 77bf17f10d
commit 4ec2f5001a
Signed by: noa
GPG key ID: 1850932741EFF672
4 changed files with 597 additions and 286 deletions

180
presentations/tf-qas.typ Normal file
View file

@ -0,0 +1,180 @@
#import "@preview/touying:0.6.1": *
#import "@preview/physica:0.9.5": *
#import "@preview/cetz:0.3.4"
#import "@preview/typsium:0.2.0": ce
#import "@preview/numbly:0.1.0": numbly
#import "./theme.typ": *
#set heading(numbering: numbly("{1}.", default: "1.1"))
#show ref: set text(size:0.5em, baseline: -0.75em)
#let cetz-canvas = touying-reducer.with(reduce: cetz.canvas, cover: cetz.draw.hide.with(bounds: true))
#show: university-theme.with(
config-info(
title: "Implementation Specific QAS", // Required
date: datetime.today().display(),
authors: ("Noa Aarts"),
// Optional Styling (for more / explanation see in the typst universe)
// ignore how bad the images look i'll adjust it until Monday
title-color: blue.darken(10%),
),
config-common(
// handout: true, // enable this for a version without animations
),
aspect-ratio: "16-9",
config-colors(
primary: rgb("#00a6d6"),
secondary: rgb("#00b3dc"),
tertiary: rgb("#b8cbde"),
neutral-lightest: rgb("#ffffff"),
neutral-darkest: rgb("#000000"),
),
)
#show outline.entry: it => link(
it.element.location(),
text(fill: rgb("#00b3dc"), size: 1.3em)[#it.indented(it.prefix(), it.body())],
)
#slide[
- #text(fill: purple)[Purple text is a question I have]
- #text(fill: red)[Red text is something I think they did not do well]
- #text(fill: orange)[Orange text is something I would have preferred a reference for]
]
#title-slide()
#outline(depth: 1, title: text(fill: rgb("#00a6d6"))[Content])
= Introduction
== Variational Quantum Algorithms
- Classical optimisation
- Parametrized Quantum Circuit
- Very structure dependent
== Quantum Architecture Search
- Automated Design
- New Problems
- Exponential search space
- Ranking circuits during search
- Parallels with Neural Architecture Search
- Differentiable QAS
- Reinforcement-learning QAS
- Predictor-based QAS
- Weight-sharing QAS
== Training Free Proxies
- No need to train parametrized quantum circuit
\ $->$ Faster searching
- No objective functions
- Possibility for easier transfer
- Need to prove correlation with ground-truth
#text(fill: red)[- not done in paper]
= Method
== Overview
#align(horizon)[
1. Sample circuits from search space
2. Filter using Path proxy
3. Rank on Expressibility
]
== Search Space
Following Neural Predictor based QAS@npqas
- Native gate set ($cal(A) = {R_x, R_y, R_z, X X, Y Y, Z Z}$)
- Layer based sampling
- Layers of $n/2$ gates
- Gate based sampling
- placing 1 gate at a time
- Why not fully random circuits?
- Mitigating barren plateaus
- Mitigating high circuit depth
#text(fill:purple)[- What is the difference with gate-based?]
== Path Proxy
#slide(composer: (auto, auto))[
- 'zero-cost'
#text(fill:orange)[- best case: $O("Operations" times "Qubits"^2)$]
// I think it'd scale like this, but am uncertain since they didn't explain it anywhere
- below $7.8 times 10^(-4)$s
1. Represent as Directed acyclic graph
2. Count distinct paths from input-to-output
3. Top-R highest path count circuits
][
#image("tf-qas/circuit.png", height: 40%)
#image("tf-qas/dag.png")
#text(size: 0.6em)[#align(right)[from Training-Free QAS@training-free]]
]
== Expressibility Proxy
#text(fill: red)[- Performance hinges on Expressibility]
- Particularly valueable without prior knowledge
#block(fill: blue.lighten(85%), inset: 12pt, radius: 6pt, stroke: 2pt + blue)[
*Expressibility:* \
The capability to uniformly reach the entire Hilbert space.
]
1. Calculate expressibility:
#align(center)[$cal(E)(cal(C)) = -D_"KL" (P(cal(C),F) || P_"Haar" (F)$]
2. Top expressibility circuits
= Results
== Evaluation
- Three variational quantum eigensolver tasks
- Transverse field Ising model
- Heisenberg model
- $"Be"space.hair"H"_2$ molecule
- Compared to
- Network-Predictive QAS@npqas
#text(fill: red)[- Hardware-efficient ansatz@hea-kandala] // but like, which one
- Random sampling
- Implementation details
- TensorCircuit python package@tensorcircuit
#text(fill: red)[- No code included anywhere]
= Conclusion
==
- Combining proxies can improve on either
#slide[
== References <touying:unoutlined>
#bibliography("references.bib", title: [])
]

Binary file not shown.

After

Width:  |  Height:  |  Size: 187 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 209 KiB