add a small conclusion
This commit is contained in:
parent
2cb5606f6e
commit
520e06f437
1 changed files with 69 additions and 31 deletions
|
|
@ -4,6 +4,8 @@
|
|||
#import "@preview/cetz:0.3.4"
|
||||
#import "@preview/typsium:0.2.0": ce
|
||||
#import "@preview/numbly:0.1.0": numbly
|
||||
#import "@preview/quill:0.7.2": *
|
||||
#import "@preview/quill:0.7.2": tequila as tq
|
||||
#import "./theme.typ": *
|
||||
|
||||
#set heading(numbering: numbly("{1}.", default: "1.1"))
|
||||
|
|
@ -41,12 +43,6 @@
|
|||
)
|
||||
|
||||
|
||||
#slide[
|
||||
- #text(fill: purple)[Purple text is a question I have]
|
||||
- #text(fill: red)[Red text is something I think they did not do well]
|
||||
- #text(fill: orange)[Orange text is something I would have preferred a reference for]
|
||||
]
|
||||
|
||||
#title-slide()
|
||||
|
||||
#outline(depth: 1, title: text(fill: rgb("#00a6d6"))[Content])
|
||||
|
|
@ -54,21 +50,27 @@
|
|||
= Introduction
|
||||
|
||||
== Variational Quantum Algorithms
|
||||
|
||||
- NISQ era
|
||||
|
||||
- Classical optimisation
|
||||
|
||||
- Parametrized Quantum Circuit
|
||||
|
||||
- Very structure dependent
|
||||
#pause
|
||||
- Performance is circuit dependent
|
||||
|
||||
== Quantum Architecture Search
|
||||
|
||||
- Automated Design
|
||||
- Automated Parametrized Quantum Ciruit finding
|
||||
- Solution to circuit dependency
|
||||
|
||||
#pause
|
||||
- New Problems
|
||||
- Exponential search space
|
||||
- Ranking circuits during search
|
||||
|
||||
#pause
|
||||
- Parallels with Neural Architecture Search
|
||||
- Differentiable QAS
|
||||
- Reinforcement-learning QAS
|
||||
|
|
@ -84,17 +86,21 @@
|
|||
- Possibility for easier transfer
|
||||
|
||||
- Need to prove correlation with ground-truth
|
||||
#text(fill: red)[- not done in paper]
|
||||
#text(fill: red)[- not done in paper@training-free]
|
||||
|
||||
= Method
|
||||
|
||||
== Overview
|
||||
|
||||
#align(horizon)[
|
||||
The Steps of the protocol:
|
||||
#pause
|
||||
1. Sample circuits from search space
|
||||
|
||||
#pause
|
||||
2. Filter using Path proxy
|
||||
|
||||
#pause
|
||||
3. Rank on Expressibility
|
||||
]
|
||||
|
||||
|
|
@ -102,11 +108,21 @@
|
|||
|
||||
Following Neural Predictor based QAS@npqas
|
||||
- Native gate set ($cal(A) = {R_x, R_y, R_z, X X, Y Y, Z Z}$)
|
||||
- Layer based sampling
|
||||
- Layers of $n/2$ gates
|
||||
- Gate based sampling
|
||||
- placing 1 gate at a time
|
||||
|
||||
#grid(
|
||||
columns: (auto, auto),
|
||||
rows: (auto, auto),
|
||||
gutter: 1em,
|
||||
[- Layer based sampling
|
||||
- Layers of $n/2$ gates
|
||||
], grid.cell(rowspan:2)[
|
||||
#quantum-circuit(equal-row-heights: true, row-spacing: 0.8em, wires: 6, 1, $R_l$, 1,[\ ],[\ ],1,$R_l$, 1,[\ ],[\ ],1,$R_l$)
|
||||
#quantum-circuit(equal-row-heights: true, row-spacing: 0.8em, wires: 6, 3, [\ ], 1, $R_l$, 1,[\ ],[\ ],1,$R_l$, 1,[\ ],[\ ],1,$R_l$)
|
||||
#quantum-circuit(equal-row-heights: true, row-spacing: 1.35em, wires: 6, 1, ctrl(1), 1, [\ ], 1, targ(), 1,[\ ], 1, ctrl(1),[\ ],1,targ(), 1,[\ ], 1, ctrl(1),[\ ],1,targ())
|
||||
],
|
||||
[- Gate based sampling
|
||||
- placing 1 gate at a time
|
||||
], []
|
||||
)
|
||||
- Why not fully random circuits?
|
||||
- Mitigating barren plateaus
|
||||
- Mitigating high circuit depth
|
||||
|
|
@ -115,25 +131,28 @@ Following Neural Predictor based QAS@npqas
|
|||
== Path Proxy
|
||||
|
||||
#slide(composer: (auto, auto))[
|
||||
- 'zero-cost'
|
||||
#text(fill:orange)[- best case: $O("Operations" times "Qubits"^2)$]
|
||||
// I think it'd scale like this, but am uncertain since they didn't explain it anywhere
|
||||
- *'zero-cost'*
|
||||
- below $7.8 times 10^(-4)$s
|
||||
#text(fill:orange)[- $O("Operations" times "Qubits"^2)$]
|
||||
|
||||
#pause
|
||||
1. Represent as Directed acyclic graph
|
||||
|
||||
#pause
|
||||
2. Count distinct paths from input-to-output
|
||||
|
||||
#pause
|
||||
3. Top-R highest path count circuits
|
||||
][
|
||||
#meanwhile
|
||||
#image("tf-qas/circuit.png", height: 40%)
|
||||
#pause
|
||||
#image("tf-qas/dag.png")
|
||||
#text(size: 0.6em)[#align(right)[from Training-Free QAS@training-free]]
|
||||
]
|
||||
|
||||
== Expressibility Proxy
|
||||
|
||||
#text(fill: red)[- Performance hinges on Expressibility]
|
||||
Assumption: Expressibility $|->$ Performance
|
||||
#pause
|
||||
- Particularly valueable without prior knowledge
|
||||
|
||||
#block(fill: blue.lighten(85%), inset: 12pt, radius: 6pt, stroke: 2pt + blue)[
|
||||
|
|
@ -155,25 +174,28 @@ Following Neural Predictor based QAS@npqas
|
|||
- Heisenberg model
|
||||
- $"Be"space.hair"H"_2$ molecule
|
||||
|
||||
#pause
|
||||
- Compared to
|
||||
- Network-Predictive QAS@npqas
|
||||
#text(fill: red)[- Hardware-efficient ansatz@hea-kandala] // but like, which one
|
||||
- Random sampling
|
||||
- Hardware-efficient ansatz@hea-kandala // but like, which one
|
||||
- Their random sampling
|
||||
|
||||
#pause
|
||||
- Implementation details
|
||||
- TensorCircuit python package@tensorcircuit
|
||||
#text(fill: red)[- No code included anywhere]
|
||||
#pause
|
||||
#text(fill: red)[- No code so one cannot reproduce]
|
||||
|
||||
== Proxy combinations
|
||||
|
||||
#slide(composer: (auto, auto))[
|
||||
- Only Path
|
||||
- Fast proxy (each $~ 2 times 10^(-4) "s"$)
|
||||
- Many queries (each $~ 10 "s"$)
|
||||
- Many ADAM queries
|
||||
|
||||
- Only Expressibility
|
||||
- Slower proxy (each $~ 0.21 "s"$)
|
||||
- Fewer queries
|
||||
- Fewer queries (each $~ 10 "s"$)
|
||||
|
||||
- Combined
|
||||
- Fast proxy filtering
|
||||
|
|
@ -186,13 +208,15 @@ Following Neural Predictor based QAS@npqas
|
|||
== Comparison with State of the Art
|
||||
|
||||
#slide(composer: (1fr, auto))[
|
||||
#text(fill: purple)[- Where do these come from?]
|
||||
- Where do these come from?
|
||||
|
||||
- A lot fewer queries
|
||||
|
||||
- Shorter search times
|
||||
|
||||
#text(fill: red)[- No ways to reproduce given]
|
||||
#pause
|
||||
However:
|
||||
- No way to reproduce and check
|
||||
][
|
||||
#image("tf-qas/outcomes.png", height: 85%)
|
||||
#text(size: 0.6em)[#align(right)[from Training-Free QAS@training-free]]
|
||||
|
|
@ -200,14 +224,28 @@ Following Neural Predictor based QAS@npqas
|
|||
|
||||
= Conclusion
|
||||
|
||||
==
|
||||
== Takeaways
|
||||
|
||||
- Combining proxies // can work better than seperately
|
||||
- Combining proxies
|
||||
|
||||
- Training-Free methods are promising
|
||||
- Training-Free methods can work better than HEA
|
||||
|
||||
#text(fill:red)[- Not reproducible]
|
||||
== What will I do (differently)
|
||||
|
||||
Sampling:
|
||||
- Evolutionary Algorithm instead of random sampling
|
||||
- With hardware constraints
|
||||
- Can build on parts of "Genetic optimization of ansatz
|
||||
expressibility for enhanced variational quantum algorithm
|
||||
performance."@genetic-expressibility
|
||||
|
||||
#pause
|
||||
Filtering:
|
||||
- Noise proxy
|
||||
- Better entanglement proxy
|
||||
|
||||
#pause
|
||||
And of course: Share my code
|
||||
|
||||
#slide[
|
||||
== References <touying:unoutlined>
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue