diff --git a/flake.nix b/flake.nix index 31df2f7..fb1ee89 100644 --- a/flake.nix +++ b/flake.nix @@ -40,6 +40,9 @@ pkgs.typst ]; }; + shellHook = '' + unset SOURCE_DATE_EPOCH; + ''; } ); }; diff --git a/presentations/main.typ b/presentations/progress.typ similarity index 61% rename from presentations/main.typ rename to presentations/progress.typ index bca004d..6815643 100644 --- a/presentations/main.typ +++ b/presentations/progress.typ @@ -34,42 +34,64 @@ ), ) - -// References displayed like [1], [2] and captions to images -// Introduction - - -#title-slide() - #show outline.entry: it => link( it.element.location(), text(fill: rgb("#00b3dc"), size: 1.3em)[#it.indented(it.prefix(), it.body())], ) -#outline(depth: 1, title: text(fill: rgb("#00a6d6"))[Content]) +== The Goal -= +#slide[ + #align(center + horizon)[ + #cetz-canvas({ + import cetz.draw: * + let left = -9 + let mid = 0 + let right = 7 -== Context + content((left, 6), [Inputs]) + content((mid, 6), [Process]) + content((right, 6), anchor: "west", [Outputs]) -- VQE for NISQ -- Ansatz $->$ big effect -- QAS to optimize - - noise - - parameters + content((left, 3), [Qubits]) + content((left, 2), [Gates]) + content((left, 1), [Connections]) + content((left, 0), text(fill: red)[Fidelities]) + content((left, -1), [Expressibility]) + content((left, -2), [Entanglement]) + content((left, -3), text(fill: red)[Noise Treshold]) + content((left, -4), text(fill: red)[Max Parameters]) -== Research Question + rect(cetz.vector.add((mid, 0), (-2, -2)), cetz.vector.add((mid, 0), (2, 2)), radius: (rest: .4), fill: rgb("#00b3dc")) + content((mid, 0), text(size: 4em)[?]) -#align(center + horizon)[ - _ - How can hardware knowledge about noise, connectivity and native gates - be used to improve the performance of Quantum Architecture Search - for Variational Quantum Eigensolvers? - _ + content((right, 3), [QML Kernels], anchor: "west") + content(cetz.vector.add((right, 2), (1, 0)), anchor: "west", [Balanced]) + content(cetz.vector.add((right, 1), (1, 0)), anchor: "west", text(fill: red)[Best Expressibility]) + content(cetz.vector.add((right, 0), (1, 0)), anchor: "west", text(fill: red)[Best Entanglement]) + content(cetz.vector.add((right, -1), (1, 0)), anchor: "west", text(fill: red)[Least Noise]) + content(cetz.vector.add((right, -2), (1, 0)), anchor: "west", text(fill: red)[Fewer Parameters]) + }) + ] ] -== Planning +== The Process + +- Cost function based on + - Expressibility + - Entanglement + - #text(fill: red)[Noise Treshold] + - #text(fill: red)[Max Parameters] + +- Possible Methods used for problem specific impls already + - Monte-Carlo Tree-Search + - Machine Learning (many options) + - Bayesian Optimization + - Differentiable Optimization strategies + + + #let chev(start, len, f: none) = { import cetz.draw: * @@ -85,17 +107,22 @@ #let lg(color1, color2) = gradient.linear(color2, color1, color2, angle: 90deg) +#let today-offset = (datetime.today() - datetime(day: 10, month: 11, year: 2025)).weeks() + + +== Planning + #slide[ #cetz-canvas({ import cetz.draw: * - content((1, 0.1), anchor: "south", [today]) + content((today-offset, 0), anchor: "south", [today]) + line((today-offset, -0.5), (today-offset, -5), stroke: (paint: rgb("#ff00cc"))) for x in (0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24) { content((x, 0), text(size: 12pt)[#(datetime(day: 10, month: 11, year: 2025) + duration(weeks: x)).display("[day]/[month]")], anchor: "north") line(stroke: (paint: lime, dash: "dashed"), (x, -0.5), (x,-5)) } - line((1, -0.5), (1, -5), stroke: (paint: rgb("#ff00cc"))) // yellow = literature // green = planning