thesis/presentations/tf-qas.typ
2026-01-05 16:14:17 +01:00

254 lines
5.8 KiB
Typst

#import "@preview/touying:0.6.1": *
#import "@preview/physica:0.9.5": *
#import "@preview/cetz:0.3.4"
#import "@preview/typsium:0.2.0": ce
#import "@preview/numbly:0.1.0": numbly
#import "@preview/quill:0.7.2": *
#import "@preview/quill:0.7.2": tequila as tq
#import "./theme.typ": *
#set heading(numbering: numbly("{1}.", default: "1.1"))
#show ref: set text(size:0.5em, baseline: -0.75em)
#let cetz-canvas = touying-reducer.with(reduce: cetz.canvas, cover: cetz.draw.hide.with(bounds: true))
#show: university-theme.with(
config-info(
title: "Training-Free QAS", // Required
date: datetime.today().display(),
authors: ("Noa Aarts"),
// Optional Styling (for more / explanation see in the typst universe)
// ignore how bad the images look i'll adjust it until Monday
title-color: blue.darken(10%),
),
config-common(
// handout: true, // enable this for a version without animations
),
aspect-ratio: "16-9",
config-colors(
primary: rgb("#00a6d6"),
secondary: rgb("#00b3dc"),
tertiary: rgb("#b8cbde"),
neutral-lightest: rgb("#ffffff"),
neutral-darkest: rgb("#000000"),
),
)
#show outline.entry: it => link(
it.element.location(),
text(fill: rgb("#00b3dc"), size: 1.3em)[#it.indented(it.prefix(), it.body())],
)
#title-slide()
#outline(depth: 1, title: text(fill: rgb("#00a6d6"))[Content])
= Introduction
== Variational Quantum Algorithms
- NISQ era
- Classical optimisation
- Parametrized Quantum Circuit
#pause
- Performance is circuit dependent
== Quantum Architecture Search
- Automated Parametrized Quantum Ciruit finding
- Solution to circuit dependency
#pause
- New Problems
- Exponential search space
- Ranking circuits during search
#pause
- Parallels with Neural Architecture Search
- Differentiable QAS
- Reinforcement-learning QAS
- Predictor-based QAS
- Weight-sharing QAS
== Training Free Proxies
- No need to train parametrized quantum circuit
\ $->$ Faster searching
- No objective functions
- Possibility for easier transfer
- Need to prove correlation with ground-truth
#text(fill: red)[- not done in paper@training-free]
= Method
== Overview
#align(horizon)[
The Steps of the protocol:
#pause
1. Sample circuits from search space
#pause
2. Filter using Path proxy
#pause
3. Rank on Expressibility
]
== Search Space
Following Neural Predictor based QAS@npqas
- Native gate set ($cal(A) = {R_x, R_y, R_z, X X, Y Y, Z Z}$)
#grid(
columns: (auto, auto),
rows: (auto, auto),
gutter: 1em,
[- Layer based sampling
- Layers of $n/2$ gates
], grid.cell(rowspan:2)[
#quantum-circuit(equal-row-heights: true, row-spacing: 0.8em, wires: 6, 1, $R_l$, 1,[\ ],[\ ],1,$R_l$, 1,[\ ],[\ ],1,$R_l$)
#quantum-circuit(equal-row-heights: true, row-spacing: 0.8em, wires: 6, 3, [\ ], 1, $R_l$, 1,[\ ],[\ ],1,$R_l$, 1,[\ ],[\ ],1,$R_l$)
#quantum-circuit(equal-row-heights: true, row-spacing: 1.35em, wires: 6, 1, ctrl(1), 1, [\ ], 1, targ(), 1,[\ ], 1, ctrl(1),[\ ],1,targ(), 1,[\ ], 1, ctrl(1),[\ ],1,targ())
],
[- Gate based sampling
- placing 1 gate at a time
], []
)
- Why not fully random circuits?
- Mitigating barren plateaus
- Mitigating high circuit depth
#text(fill:purple)[- What is the difference with gate-based?]
== Path Proxy
#slide(composer: (auto, auto))[
- *'zero-cost'*
- below $7.8 times 10^(-4)$s
#text(fill:orange)[- $O("Operations" times "Qubits"^2)$]
#pause
1. Represent as Directed acyclic graph
#pause
2. Count distinct paths from input-to-output
#pause
3. Top-R highest path count circuits
][
#meanwhile
#image("tf-qas/circuit.png", height: 40%)
#pause
#image("tf-qas/dag.png")
#text(size: 0.6em)[#align(right)[from Training-Free QAS@training-free]]
]
== Expressibility Proxy
Assumption: Expressibility $|->$ Performance
#pause
- Particularly valueable without prior knowledge
#block(fill: blue.lighten(85%), inset: 12pt, radius: 6pt, stroke: 2pt + blue)[
*Expressibility:* \
The capability to uniformly reach the entire Hilbert space.
]
1. Calculate expressibility:
#align(center)[$cal(E)(cal(C)) = -D_"KL" (P(cal(C),F) || P_"Haar" (F)$]
2. Top expressibility circuits
= Results
== Evaluation
- Three variational quantum eigensolver tasks
- Transverse field Ising model
- Heisenberg model
- $"Be"space.hair"H"_2$ molecule
#pause
- Compared to
- Network-Predictive QAS@npqas
- Hardware-efficient ansatz@hea-kandala // but like, which one
- Their random sampling
#pause
- Implementation details
- TensorCircuit python package@tensorcircuit
#pause
#text(fill: red)[- No code so one cannot reproduce]
== Proxy combinations
#slide(composer: (auto, auto))[
- Only Path
- Fast proxy (each $~ 2 times 10^(-4) "s"$)
- Many ADAM queries
- Only Expressibility
- Slower proxy (each $~ 0.21 "s"$)
- Fewer queries (each $~ 10 "s"$)
- Combined
- Fast proxy filtering
- Even fewer queries
][
#image("tf-qas/table.png")
#text(size: 0.6em)[#align(right)[from Training-Free QAS@training-free]]
]
== Comparison with State of the Art
#slide(composer: (1fr, auto))[
- Where do these come from?
- A lot fewer queries
- Shorter search times
#pause
However:
- No way to reproduce and check
][
#image("tf-qas/outcomes.png", height: 85%)
#text(size: 0.6em)[#align(right)[from Training-Free QAS@training-free]]
]
= Conclusion
== Takeaways
- Combining proxies
- Training-Free methods can work better than HEA
== What will I do (differently)
Sampling:
- Evolutionary Algorithm instead of random sampling
- With hardware constraints
- Can build on parts of "Genetic optimization of ansatz
expressibility for enhanced variational quantum algorithm
performance."@genetic-expressibility
#pause
Filtering:
- Noise proxy
- Better entanglement proxy
#pause
And of course: Share my code
#slide[
== References <touying:unoutlined>
#bibliography("references.bib", title: [])
]